日本桥梁和建筑结构监测的研究与实施综述丨Engineering(4)
2023-10-27 来源:旧番剧
从这些测量数据中总结出的经验已被用来设计日本的高层建筑。
自20世纪80年代后期以来,SMAC地震仪系统逐渐被淘汰。随着信息技术和数字记录技术的发展,新型加速度计应运而生。现代加速度计通常是一种小型的微电子机械系统(MEMS)。近年来,研究人员对无线传感器网络进行了大量的研究和开发。在日本,无线传感器网络在建筑结构监测中的实际应用已经在几项研究中得到证实。无线传感器网络在应用中存在两个问题:一个是无线通信的稳健性,另一个是功耗的降低。无线传感器网络的这些问题还有待于进一步研究。
在无线传感器网络的开发过程中,从基于振动技术的建筑结构监测系统中所获取的数据被用于多种用途,包括监测极端情况下建筑结构的响应及为设计和工程的再开发提供反馈。20世纪90年代,随着越来越多的桥梁和高层建筑的修建,结构监测系统被应用于施工过程,大型建筑结构的振动控制变得越来越普遍。随着建筑结构的不断发展和监测系统的不断完善,建筑结构在不同环境和不同负载条件下的响应数据也得到不断积累。这些数据可被用于评估建筑结构的状况、指出潜在的损坏并有助于维修和(或)改造决策的提出。监测数据也为建筑结构的维修和管理提供依据。
表2 文中所涉及的地震清单
Mw : moment magnitude.
文中综述了土木结构的结构监测策略和实践,重点介绍了日本在这方面的研究工作和实施情况以及作者本人的一些经验。在对实际桥梁和建筑物的振动监测数据进行分析的过程中,研究人员得到了一些新的和意想不到的发现,由此可见监测的重要性。主要包括桥梁结构监测和建筑结构监测两部分内容。每个部分的监测案例按照类型、策略和目的进行归类。
二、桥梁结构监测
(一)大跨度桥梁设计验证的监测
动态性能是大跨度桥梁设计时需要重点考虑的因素。由于大跨度桥梁的柔韧性和低阻尼的特点,其在整个使用寿命期内可能会发生各种类型的振动。空气动力稳定性和地震响应是设计中需要主要考虑的问题。因此,对日本的大跨度桥梁在早期研发阶段、设计阶段和竣工阶段分别进行动态测试是十分普遍的。研究人员有时候在施工阶段就会安装监测系统,并在施工结束后再多保留几年。这类监测数据已被用于验证与地震载荷和风载荷相关的设计假设。在下面的章节中,我们针对设计验证将描述一些与监测相关的研究工作。这些设计验证以抗风载荷和抗地震载荷以及建筑结构响应为研究对象。