日本桥梁和建筑结构监测的研究与实施综述丨Engineering(7)

2023-10-27 来源:旧番剧
2. 抗震设计验证的监测
从建筑结构监测中获得的抗震响应数据已被用于验证抗震设计。日本最长的斜拉桥——多多罗大桥(Tatara Bridge)(图4)就是其中的一个例子。2001年日本广岛附近发生的Geiyo地震(Mw = 6.7)对多多罗大桥产生了强烈刺激。桥梁现场的最大地面加速度为144 cm·s–2 。对地震响应的观测表明,根据监测系统记录的地震动计算出的响应谱的实际地震载荷低于设计规范。研究人员通过模拟分析的方法研究了桥梁的抗震性能,验证了建筑结构模型和假设。模拟结果与实际观测到的地震响应基本一致。

日本桥梁和建筑结构监测的研究与实施综述丨Engineering


图4 (a)Tatara桥;(b)在2001年广岛附近发生的Geiyo地震中,桥梁抗震设计响应谱与所观测到的响应谱之间的比较;(c)Tatara桥的监测系统(单位:m)(由本州-四国桥梁管理局提供)。EW:东西方向;NS:南北方向;V:垂直方向。P1、P2和P3是桥墩;P4是桥梁端部的桥墩
大跨度桥梁抗震分析中的一个重要工程问题是地震动的空间变化。因为大跨度桥梁的支座被大跨度结构隔开,所以导致地震波传播滞后,进而产生了这种空间变化。在1995年日本阪神(神户地区)大地震(Mw = 6.9)期间,研究人员根据所观测到的地震响应,对日本Onaruto桥进行了此类分析。研究表明,地震动的空间变化增加了主梁的垂直响应。其他大跨度桥梁(包括2001年广岛附近的Akinada桥)的垂直梁响应也有类似的增加趋势。
在2001年日本广岛附近发生的Geiyo地震中,第一座来岛海峡大桥(Kurushima Kaikyo Bridge)坍塌。研究人员将观测到的地震动应用到了动态三维有限元分析中,并验证了失效的中心支撑杆组件的设计性能。通过重新分析从极端事件中获取的观测数据,可以为验证和更新设计提供有价值的信息。
另一个重要的设计验证案例是阻尼值的合理估算和相关机理的恰当阐述。合理估算阻尼值并阐述相关机理是非常困难的,因为相关机理比较复杂以及被估计的值对激发条件又十分敏感。尽管如此,一些研究人员还是利用大跨度桥梁的抗震记录对阻尼机制进行了阐述并估算了阻尼值。例如,Kawashima等利用Suigo桥(长度为290.45 m的双跨连续钢箱梁斜拉桥)的33次抗震记录阐明了桥塔和桥面板的阻尼特性。结果发现,阻尼比与实测的加速度相关,同时取决于建筑结构部件和震动刺激的方向。
猜你喜欢
动漫推荐
免责声明:动漫番剧数据来源网络!本站不收费,无vip,请勿上当!

www.jiufanju.com-旧番剧