前沿|StarLink星座最新动态及星间组网动态路由探讨(4)

2023-10-27 来源:旧番剧
注:关于(1)-(2)两节分析,亦可参考《Starlink星座卫星在轨实时跟进与分析》,以获得更详细信息及前后对比。
3 网络覆盖
对StarLink星座覆盖特性的分析,方法基本上与先前相同,仍以全球分布的终端为采样点,以2纬度*2经度的方式进行部署。覆盖特性分析取1天的仿真周期,步长60秒,当前在轨538颗StarLink卫星对全球覆盖特性如下图所示。

前沿|StarLink星座最新动态及星间组网动态路由探讨


图5 Starlink卫星覆盖特性—可见卫星个
由图5可看出,Starlink星座在南北纬53度附近可形成最优的覆盖,平均覆盖重数可达5,而一个月前(2020.05.17-12:00)覆盖重数为4,相比而言平均可见星个数提升25%。对于高纬度区域(高于60度),仍是无法提供覆盖,该部分区域将由后续规划的较大倾角(包括74/70/81度)卫星提供覆盖服务;对于中低纬度区域(低于30度),基本上可提供平均1.5-3重覆盖,较先前也有明显提升。
4 端到端时延
考虑到当前在轨Starlink卫星并没有星间链路,此时,关口站和卫星间通过多跳中继的方式提供了端到端的服务,如纽约到西雅图通信业务流为纽约-接入星-站-……-接入星-西雅图。以1天为仿真时长,端到端往返时延RTT如图6所示:

前沿|StarLink星座最新动态及星间组网动态路由探讨


图6 端到端往返时延RTT分析
由图6上图可看出,对于纽约到西雅图之间的可通信时间占比为77.6%,即仍有22.4%时间内没有可达链路。而上次分析(2020.05.17-12:00)中,可通信时间占比为59%,提升了18.6个百分点。端到端RTT平均为51.3ms,且RTT波动较大。关于RTT波动较大的原因,先前分析中认为“仍是由于当前StarLink星座分布不够均匀而导致”,该结论应该是不够严谨的。现在看来,当前RTT的分析更多仅考虑端到端最优传输路径,而此传输路径在时间推进过程中必然是随着卫星运动而变化的,至于如何降低此RTT波动则更多需考虑站星的接入/路由(如果有星间链路则更多应该考虑星间路由)问题。端到端时延方面,相比先前的平均51.8ms仅降低了不到1%,这是由于卫星数量增加及在轨更为均匀的分布,并不能有效降低端到端时延,却可以有效提升可建立通信服务的时间占比,因为保证100%可用度才是第一目标。
猜你喜欢
动漫推荐
免责声明:动漫番剧数据来源网络!本站不收费,无vip,请勿上当!

www.jiufanju.com-旧番剧