每天都能看到,却仍没完全琢磨明白——“平凡”的光子(2)
2024-06-15 来源:旧番剧
尽管如此,当时科学家们比较倾向于牛顿的假说。毕竟牛顿写了《原理》,科学史上奠基书籍之一。惠更斯的模型在1801年得到了一些支持,托马斯·杨进行了双缝实验。在实验中,杨将一束光并排通过两个小孔,穿过小孔的光形成了一种特殊的图案。每隔一段时间,经过两个孔的交叉波纹相互作用——产生更明亮的光,或相互抵消,像海浪一样。
大约五十年后,另一个实验使惠更斯的模型更有说服力。1850年,Léon Foucalt将光在空气中的速度与光在水的速度进行了比较,与牛顿的预言相反,光在密度更大的介质中并没有移动得更快。相反,像波一样,它的速度变慢了。11年后,麦克斯韦发表了《Physical Lines of Force》一书,他在书中预言了电磁波的存在。麦克斯韦注意到它们与光波的相似之处,这使他得出结论:它们是同一种。
惠更斯的波模型似乎赢得了胜利。但在1900年,普朗克提出了一个想法,引发了关于光的全新思考。普朗克把电磁波能量量子化,解释了一些令人困惑的辐射行为。1905年,爱因斯坦以普朗克的能量子概念为基础,宣布粒子与波势均力敌,最终解决了粒子与波的争论。
正如爱因斯坦所解释的那样,光既具有粒子的性质,也具有波的性质,每个光粒子的能量对应于波的频率。他的佐证来自于对光电效应的研究,光电效应是指光将电子从金属中撞出的方式。如果光以连续波的形式传播,光在金属上照射足够长的时间,总是会把一个电子撞击出去,因为光传递给电子的能量会随着时间积累。
但是光电效应并非如此。1902年,菲利普观察到,只有高于一定能量的光或者高于一定频率的光波才能从金属中撞出电子。在这种情况下,光更像是一个粒子,一个单独的能量子。密立根并不相信光量子的存在,他企图推翻爱因斯坦的假设。令他惊讶的是,他仔细测量了光和发生光电效应的电子之间的关系,在实验上精确证实了爱因斯坦的光电效应。爱因斯坦对光电效应的研究使他获得了1921年的诺贝尔奖。
1923年,康普顿为爱因斯坦的光模型提供了证实。康普顿将高能光射向材料,并成功地预测了碰撞中释放的电子散射的角度。他假设光线像小台球一样。化学家吉尔伯特·刘易斯给这些台球起了个名字。在1926年给《Nature》杂志的信中,命名它们为“光子”。
近年来,科学家们思考光子的方式在不断演变。其一,光子现在被称为“规范玻色子”。规范玻色子是传递相互作用的媒介粒子。例如,原子之所以粘在一起,是因为原子核中的带正电的质子与绕其轨道运行的带负电的电子交换光子——即电磁力的相互作用。其二,光子现在被认为是量子场中的粒子、波和激发态(量子场中的波)。物理学家认为每一个粒子都是量子场的激发物。Ruiz 曾说:”我喜欢把量子场想象成一个平静的池塘,你看不到任何东西, 然后你丢一块鹅卵石进去,表面产生涟漪。这是一个粒子。”