于寻常处证神,数学家阿诺德其人其事(4)

2023-06-03 来源:旧番剧
图3. 阿诺德经典著作两种
阿诺德给我印象最深的不是他的那些高深数学研究成果—我看不懂,自然也谈不上什么印象,而是他在一般浅层次数学问题上的别出心裁。请允许我举两个例子。其一是三角形垂心都交于一点的证明,这是个古老的平面几何问题。阿诺德竟然用雅可比恒等式来证明。雅可比恒等式可过渡到一个关于李括号的两层嵌套恒等式,那应该就是微分几何的第二比安奇恒等式,是广义相对论的一个要点。阿诺德用雅可比恒等式证明这个平面几何定理,给我们演示了高射炮打蚊子确实比较轻松这一伟大命题。其二是一元五次方程没有有限根式解的证明。一元五次方程没有有限根式解的问题, 经拉格朗日的思考、鲁菲尼和阿贝尔等人的工作后由伽罗华用群论系统地证明了,并且由此产生了伽罗华理论。然而,1963年阿诺德竟然想到了用拓扑学的方法加以证明。证明思路基于如下观察和定理。观察是,方程系数绕一个环路回到原点可能会造成多项式方程根的置换。
而定理是,两个环路对易式定义的环路会造成根空间里的环路。这样问题就来了,如果根的置换的对易式还是根的置换的话,那代数方程解的公式就必须是嵌套根式的样子。若根的置换的对易式之对易式一直是根的置换,那解的根式表达就必须是无限嵌套的样子。五次方程没有有限根式解由此得到了一个拓扑学角度的证明,思路清晰,比伽罗华理论好懂多了。此两例的详细内容,请参见拙著《惊艳一击》和《云端脚下》。
阿诺德是数理通透的大家,自然也是个教育大家。他的“论数学教学”一文,读来十分震撼,可能对于数学教学和数学家培养特别有意义,对物理教学和物理学家培养也有参考价值 (可以批判地借鉴嘛)。该文开篇第一句即是‘Mathematics is a part of physics…Mathematics is the part of physics where experiments are cheap (数学是实验不花钱的那部分物理)’,诚哉斯言。不过,这里的physics,按照其字面意思理解为‘关于自然的学问’可能更贴切些。这句话解释了为什么阿诺德是个合格的数学物理学家。“Jacobi注意到,一个数可表示为四个平方数之和与单摆的运动是由同一个函数所支配的。这才体现宇宙的完美装配嘛……”, 嗯,这样的学问是阿诺德的喜好,也就不难理解了。
阿诺德认为,“20世纪把数学和物理分成两个学科,这是灾难性的……一代数学家在不知道科学那一半的情况下成长起来,然后把丑陋的经院赝数学教给学生们。那些低能、无力理解物理的数学家让我们老想起奇怪数字的公理化理论。数十年来是这样的丑陋构建的数学充斥了我们的课堂, 在法国,在俄罗斯, 皆如此。…大多数大学生,甚至大多数法国的数学教授都画不出用参数方程定义的曲线(比如 x=t^3-3t,y=t^4-2t^2) 。…… 他们既不熟悉黎曼面也不熟悉表面的拓扑分类,……这还是给世界贡献了拉格朗日、拉普拉斯、柯西、庞加莱的法国吗?” 对于那些不会数学但是以为能应用一点数学就可以拿自己当数学家的人,阿诺德写道:“我必须提醒大家注意巴斯德的一句名言:‘there never have been and never will be any applied sciences, there are only applications of sciences (从来没有也永远不会有什么应用科学,只有科学的应用!
猜你喜欢
动漫推荐
免责声明:动漫番剧数据来源网络!本站不收费,无vip,请勿上当!

www.jiufanju.com-旧番剧