文本挖掘实操|用文本挖掘剖析54万首诗歌,我发现了这些(14)

2024-06-15 来源:旧番剧
6.2 题材标签共现分析
前面的诗歌题材分类是多标签分类,也就是可能会出现同一首诗歌对应多个题材标签的情况。在这种情况下,我们可以进行题材标签的共现分析,也就是多次同时出现的题材标签,它们之间会存在一定的关联性。
现对标签共现的情况进行建模,得到的结果可视化呈现如下所示(点击图片可放大查看):

文本挖掘实操|用文本挖掘剖析54万首诗歌,我发现了这些


上图中,线条的粗细表示共现的频次多寡,越粗表示共现频次越高,反之越低。其中,有几对标签对的共现频率较高:
世事变迁 - 黯然神伤
羁旅思乡 - 世事变迁
咏史怀古 - 蓑笠纶竿
世事变迁 - 金戈铁马
对酒当歌 - 世事变迁
悼亡故人 - 世事变迁
其中,“黯然神伤”和“世事变迁”的相关性最高,这个很好理解,毕竟“物是人事事休,欲语泪先流”,类似因感叹逝事而伤感的诗句还有“人世几回伤往事,山形依旧枕寒流”、“一生事业总成空,半世功名在梦中”;“羁旅思乡”和“世事变迁”之间的相关性第二高,此类的诗句有“少小离家老大回,乡音无改鬓毛衰”、“去日儿童皆长大,昔年亲友半凋零”等。
此外,我们也可以发现,在出现2个及两个以上题材标签的诗歌中,“世事变迁”和其他题材同时出现的概率很大:世事变迁可能导致诗人黯然神伤;也可能是战争导致兵连祸结,产生出“兴,百姓苦,亡,百姓苦”的感慨;抑或是“桃李春风一杯酒,江湖夜雨十年灯”的对酒当歌。
6.3 诗歌题材趋势分析
笔者将诗歌数据集中的朝代按照时间顺序由远及近进行排列,并合并其中年代接近的朝代,将其与23个热门诗歌题材做(占比)交叉分析,得到下图(点击图片可放大查看):

文本挖掘实操|用文本挖掘剖析54万首诗歌,我发现了这些


猜你喜欢
动漫推荐
免责声明:动漫番剧数据来源网络!本站不收费,无vip,请勿上当!

www.jiufanju.com-旧番剧