文本挖掘实操|用文本挖掘剖析54万首诗歌,我发现了这些(16)

2024-06-15 来源:旧番剧
在上图中,有两类坐标---外围有半径圆圈的红色点是朝代的,“x”的诗歌题材的坐标。
汉代的坐标“孤悬海外”是因为数据量过小,统计特征不甚明显,故笔者在这里不做分析。
在图的左上角,魏晋、南北朝、隋末唐初、隋这几个朝代的圆圈重合度较高,说明它们的诗歌题材数量分布较为相似,联想到这几个朝代前后相继,这又一次体现了诗歌创作具有时代延续性的特征。
同样,唐代及其以后的圆圈呈“扎堆状”,标明它们的诗歌写作题材的数量分布较为相似,反映出唐以降的朝代在诗歌创作题材方面的差异度较小,题材创作方向的创新性不高。究其原因,在于诗歌在唐代已经进化到“究极状态”:
唐诗的题材和意境也几乎无所不包,修辞手段的运用已达到炉火纯青的程度。它不仅继承了汉魏民歌、乐府传统,并且大大发展了歌行体的样式;不仅继承了前代的五、七言古诗,并且发展为叙事言情的长篇巨制;不仅扩展了五言、七言形式的运用,还创造了风格特别优美整齐的近体诗。近体诗是当时的新体诗,它的创造和成熟,是唐代诗歌发展史上的一件大事。它把我国古曲诗歌的音节和谐、文字精炼的艺术特色,推到前所未有的高度,为古代抒情诗找到一个最典型的形式,至今还特别为人民所喜闻乐见。
唐诗代表了中华诗歌的最高成就,无疑是中华以及世界文坛上浓墨重彩的笔触!这对于想要另辟新境的宋代诗人来说无疑是巨大的压力。正如王安石和鲁迅所言:
“世间好语言,已被老杜道尽;世间俗语言,已被乐天道尽”,
“我以为一切好诗,到唐朝已被做完,此后倘非翻出如来掌心之‘齐天大圣’,大可不必再动手了”。
7 通过GPT-2生成表达流畅的诗歌
从某种程度上讲,诗歌生成是从另一维度对诗歌进行深度分析。
生成什么诗歌,跟诗歌生成模型“吃下去”什么是息息相关的。诗歌生成模型的“生成”不是“无源之水”、“无本之木”,它是在充分学习和吸收前人的若干诗作后,习得了一定的“创作手法”,因而能生成效果尚可的诗歌。
同时,我们也能从生成的结果中发现诗歌创作的一些规律,做一些深入探究。
7.1 诗歌生成示例分析
在这一部分,笔者用于训练诗歌生成模型的语料库是基于热门题材标签体系得到的带有题材标签(目前是23个)的律诗(七言和五言)和绝句(七言和五言),它们都满足诗歌的结构性、音调性和语义性的要求。
这里笔者采用的是GPT2(Generative Pre-Training 2nd),它是一个无监督语言模型,能够生成具有连贯性的文本段落,在许多语言建模任务基准中取得了领先级表现(数据量级和参数量级摆在那里,当然跟它的后浪GPT3不能比...)。而且该模型在没有任务特定训练的情况下,能够做到初步的阅读理解、机器翻译、问答和自动摘要。其核心思想可以总结为“给定越多参数以及越多样、越大量的文本,无监督训练一个语言模型或许就可让该模型具备更强的自然语言理解能力,并在没有任何监督的情况下开始学会解决不同类型的 NLP 任务”。
猜你喜欢
动漫推荐
免责声明:动漫番剧数据来源网络!本站不收费,无vip,请勿上当!

www.jiufanju.com-旧番剧