机器人与触觉传感技术的碰撞,一文初探人类与机器人的触觉传感(13)
2023-06-03 来源:旧番剧
由图 7 中还可以看出,θ通常应根据指尖的尺寸进行调整。此外,对于矩形表面上的最佳力矩补偿,无论切向力补偿如何,都应使楔块朝向如下:
其中,h_f 和 w_f 分别表示指端接触区的高度和宽度。相应地选择θ可以确保楔型与指尖的主对角线平行。
3.1.2 实验分析
本文实验采用图 8 所示的实验装置。一个 UR-5 机器人,同时手臂配备了 Robotiq 双指 85 夹持器和 FT-300 力 / 扭矩感应手腕。每个夹持手指都有一个 7×4 的触觉传感器阵列和一个有图案的定向粘合剂皮肤。这些传感器的数据与来自机器人手臂编码器的位置和速度信息相结合,提供了机器人抓取的动态和静态的完整图像。作者在实验中,制作了一组特殊的粘合表面,以实现上文介绍的微型楔块的对角线 “人字形” 图案。
图 8. 机器人抓取实验装置
实验中制作了多个壁虎粘合剂面板,面板两半的方位角以 7.5° 增量变化,从θ=0° 到θ=45°,即从完全垂直于力线(Line of Force)到远离力线 45° 的位置。接下来,使用每套壁虎胶覆盖的面板进行各种实验。实验中设计了机器人手臂的两种运动模式。每次运行时,亚克力板上的标称接触面(Nominal Surface Contact)逐渐增加,从 25% 开始,然后到 50%、75%,直至最后 100% 覆盖(通过手动测量和预先编程的抓取点进行调节)。
实验过程从一块大约四分之一英寸厚的刚性附着的丙烯酸板开始。实验要求是,在规定的正常力水平下,用涂有粘合剂的两指夹持器捏住。在实验过程中,通过调节夹持器的闭合设定值,可以改变该夹持力。作者在实验中发现,对可用设定值的离散化处理使得在饱和致动器和传感器之前只能在四种确定的、不同的法向力之间变化,而其中只有三种可以被调节到低压范围内。在完成这种捏合之后,第一种运动模式是向上拉动刚性连接的丙烯酸板,从而在指尖的粘合表面上施加纯剪切力。第二种运动模式是围绕接触面的质心旋转,这样一个纯力矩就被施加在指尖的粘合剂上。