AI是基因检测发展的加速器?细聊“AI 基因检测”的正确打开方式(2)
2023-07-14 来源:旧番剧
测序成本与超摩尔定律
“现在是大家的接受度的问题。”他继续说道。2014年,NIPT试点展开意味着基因技术临床应用迈出了第一步,而今,这项技术的年检测量已突破400万人;第一份基于NGS的肿瘤基因检测批件于2018年7月发出,肿瘤临床检测开始起步。此外,轻医疗概念的消费级基因检测在国外已经形成市场,2018年年检测量突破2600万人。尽管中国不是人口迁徙国家,对祖源检测的市场需求不比美国,但大人口基数以及健康管理需求也造就了消费基因检测的巨大市场。
在NIPT、肿瘤检测、消费基因之后,基因检测的作用还有什么呢?在半个小时的演讲中,周代星给大家分享了一个故事:
生活在辽宁海城一个普通家庭的姐妹俩,姐姐24岁,妹妹16岁,从小辗转多家医院求医问诊,不幸的是,均被诊断为“脑瘫”。而姐妹俩在接受全外显子组检测(WES)后发现,她们所患的其实是一种叫做多巴反应性肌张力障碍(DRD)的罕见病。在医生进行针对性治疗一个月后,姐妹俩可以自己吃饭;服药50天后就能自己玩手机、开直播,而每月服药的费用,仅需100多元。
这是一个极具代表性的案例,通过分子层面的诊断,对疾病最根本的原因作出解释。基因检测最终的意义,或许应该是像这样通过对遗传密码的解析指导诊疗、指导生活。
人工智能是全外显子检测实现的前提
“这对姐妹是比较幸运的,能够找到病因,并且能有治疗方案。”周代星告诉记者,“其实还有相当一部分疾病,研究上暂时没有找到对应的基因。”除了染色体疾病和单基因疾病,大多数疾病由多个位点控制。位点与位点之间有着复杂的关联,不同位点的变异组合可能会形成不同的疾病亚型。而除了遗传以外,生活习惯、环境等因素也与疾病息息相关,带有致病位点的人并非一定会发病;即使发病,由于个人耐受不同,最终相同疾病在临床的表型也存在差异。因此,尽管理想很丰满,但我们也不得不承认现实是骨感的,单单依靠人力,很难理清疾病与位点的对应关系。
人工智能助力未知关联的挖掘
在获取到一个人的基因信息后,通常需要与人类基因组匹配来找出可能存在的突变。而突变与疾病的对应关系的判断大部分依靠公共数据库,主要通过对已经发表的文献挖掘得来。但全球范围内每天更新的论文数量非常大,全部依赖人工整合并不现实。这个时候便体现出了人工智能的价值。
目前大部分人工智能的技术路径是人工神经网络,其中又有ART网络、LVQ网络、Kohonen网络、Hopfield网络几种算法的变形。机器学习是目前人工智能的核心,它能够通过对大量非结构化数据进行学习和整合,挖掘并计算其中的关联。通过对已有文献和新增文献的持续挖掘,人工智能可以持续不断的挖掘并更新突变位点和疾病的潜在联系。