AI是基因检测发展的加速器?细聊“AI 基因检测”的正确打开方式(3)

2023-07-14 来源:旧番剧
“这种关联覆盖的越多,人们对基因的解读能力就越强,越准确。”他告诉动脉网,这也是IBM Watson做的事情。
用“老数据”得出新发现
对于已经覆盖到的疾病,人工智能之于基因的意义或许还能上升到疾病的辅助诊断。以2019年3月23andme发布的二型糖尿病研究为例,基于大量的数据训练,23andme可以完全只依靠基因数据来判断用户是否患有二型糖尿病。
尽管这是一种多基因疾病,在大量数据的加持下,23andme可以将准确性训练到79%。不过,你可能会想临床上二型糖尿病的临床诊断相对简单,为什么反而要通过更复杂的手段来诊断呢?那么换一个例子可能会有更直观的感受。抑郁症80%的发病都与基因有关,且是一种多基因疾病。这种疾病目前在临床上主要通过对患者调查问卷来确诊,极度依赖心理医生的个人经验。不夸张的说,抑郁症的诊断还停留在经验医学时代。
“如果能够仅根据基因对抑郁症进行初步诊断,即便50%的准确率相比目前手段都是巨大突破。”周代星这样解释。
大规模数据是智能的前提
始于无创(产前)、兴于肿瘤(检测),鼎盛于全基因组测序。在可预见的未来里,全基因组或者全外显子组的普及是必然趋势。但全基因组或者全外显子组的数据解读一直面临瓶颈,如果单纯依靠人力,一位生物信息工程师一天可能只能出具一份到两份报告——这样的速度几乎不可能实现产品的规模化。因此,全外显子要大规模市场化,人工智能是必选项。
但是,这样的人工智能要如何实现呢?。数字医疗公司AliveCor的产品审批之路或许值得借鉴。AliveCor 针对 Apple Watch 推出了能够即时量测心电图的“KardiaBand”表带,这是数
110万个ECG数据,并将超过20万条有心房纤颤的状况的数据与70万条正常数据比对,再不断校准后才通过考核。
对所有的人工智能应用而言,智能的前提都是大量的数据训练。放在基因检测领域,大量数据训练的前提则是有大量数据产生,这意味着需要测序技术的大规模覆盖。
要拿出社会所需的检测产品
“企业首先得拿出符合社会需求的产品。”周代星指出。他认为,只有能够满足社会需求的产品,才能被市场所接受。毫无疑问,NIPT是成功的先例。但我们也不得不承认,仅仅是染色体的检测,覆盖的信息还太少。“现在我们在尝试推广全外显子检测,可以覆盖99%以上的遗传信息。”他透露,目前该产品价格低于3000人民币,且正在持续下降中。
猜你喜欢
动漫推荐
免责声明:动漫番剧数据来源网络!本站不收费,无vip,请勿上当!

www.jiufanju.com-旧番剧