机器人与触觉传感技术的碰撞,一文初探人类与机器人的触觉传感(16)

2023-06-03 来源:旧番剧
机器人能够灵巧的进行操纵,得益于其对手持物体姿势的稳健估计。然而,由于存在严重的遮挡问题,在机器人手握住和操纵物体时,很难跟踪物体的姿态。为了解决机器人操作过程中的手持式(In-Hand)目标跟踪问题,本文提出将一个 GPU 加速的高保真物理模拟器 [6] 作为前向动力学模型与基于样本的优化框架相结合,以跟踪具有接触反馈的物体姿势(如图 10 所示)的方法。该方法将机器人控制器发送到一个 GPU 加速物理模拟器中,该模拟器并行运行许多机器人的状态模拟运算,每一个都有不同的物理参数和扰动的物体姿态。将观察成本(如来自真实世界和模拟的接触反馈等)传递给基于样本的无导数优化器,该优化器定期更新所有模拟的状态和参数,以更好地匹配真实世界。在任意时刻,该方法都最终选择代价最低的仿真姿态作为当前目标的姿态估计。
无导数优化是数学优化中的一门学科,它不使用经典意义上的导数信息来寻找最佳解:有时,关于目标函数 f 的导数的信息不可用,不可靠或不切实际。比如本文就用取样 (Sampling) 来更新和优化函数值。

机器人与触觉传感技术的碰撞,一文初探人类与机器人的触觉传感


图 10. 手持式目标姿态跟踪框架
3.2.1 方法简述
首先,作者定义了机械手在物体操纵过程中对手持物体姿态的跟踪问题。在某个时刻 t,对象的姿势表示为 p_t。作者首先定义一个物理动力学模型 s_(t 1)=f(s_t,u_t,θ),其中 s_t 表示世界状态(刚体的位置和速度,以及关节体中关节角的大小),u_t 表示机器人控制器(使用期望的关节位置作为动作空间),θ表示模拟的固定参数(如质量和摩擦力)。
对于仿真模型 f,给定初始值 p_0、s_0、θ,只需要回放仿真中机器人的动作序列 u_t 来估计姿态。然而,由于前向模型不完善,姿态的初始值有噪声,可以通过引入观测反馈(触觉感知的一种方式)来改进姿态估计。令 D 表示机器人关节的数目,L 为它的接触传感器的数目。将观测向量 o_t 定义为机器人 q_t 关节位置配置值的串联结果,以及如下定义:R_t(位于指尖上)、感应接触的力矢量 c_t、接触面 d_t 上的平移滑移方向上的单位矢量,以及接触面 R_t 上的旋转滑移的二元方向,其中 l 表示第 l 个接触传感器。一般的手持式姿态估计问题是:给定当前和过去的观测值 o_(1:t),机器人控制器 u_(1:t),以及初始姿态 p_0,找到当前物体最可能的姿态 p_t。完整流程见算法 1。
猜你喜欢
动漫推荐
免责声明:动漫番剧数据来源网络!本站不收费,无vip,请勿上当!

www.jiufanju.com-旧番剧